skip to main content


Search for: All records

Creators/Authors contains: "Joalland, Baptiste"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract

    We report on the utility of Radiofrequency Amplification by Stimulated Emission Radiation (RASER) for background‐free proton detection of hyperpolarized biomolecules. We performed hyperpolarization of ≈0.3 M ethyl acetate via pairwise parahydrogen addition to vinyl acetate. A proton NMR signal with signal‐to‐noise ratio exceeding 100 000 was detected without radio‐frequency excitation at the clinically relevant magnetic field of 1.4 T using a standard (non‐cryogenic) inductive detector with quality factor ofQ=68. No proton background signal was observed from protonated solvent (methanol) or other added co‐solvents such as ethanol, water or bovine serum. Moreover, we demonstrate RASER detection without radio‐frequency excitation of a bolus of hyperpolarized contrast agent in biological fluid. Completely background‐free proton detection of hyperpolarized contrast agents in biological media paves the way to new applications in the areas of high‐resolution NMR spectroscopy and in vivo spectroscopy and imaging.

     
    more » « less
  5. Abstract

    We report on the utility of Radiofrequency Amplification by Stimulated Emission Radiation (RASER) for background‐free proton detection of hyperpolarized biomolecules. We performed hyperpolarization of ≈0.3 M ethyl acetate via pairwise parahydrogen addition to vinyl acetate. A proton NMR signal with signal‐to‐noise ratio exceeding 100 000 was detected without radio‐frequency excitation at the clinically relevant magnetic field of 1.4 T using a standard (non‐cryogenic) inductive detector with quality factor ofQ=68. No proton background signal was observed from protonated solvent (methanol) or other added co‐solvents such as ethanol, water or bovine serum. Moreover, we demonstrate RASER detection without radio‐frequency excitation of a bolus of hyperpolarized contrast agent in biological fluid. Completely background‐free proton detection of hyperpolarized contrast agents in biological media paves the way to new applications in the areas of high‐resolution NMR spectroscopy and in vivo spectroscopy and imaging.

     
    more » « less